博客
关于我
利用pandas做数据分析统计应用---统计二胎年龄差距
阅读量:376 次
发布时间:2019-03-05

本文共 918 字,大约阅读时间需要 3 分钟。

源码和数据文件见上述链接。

本文数据提取自深圳市2019年某次公租房申请公示名单,移除了非身份证的数据。

import pandas as pdimport matplotlib.pyplot as plt '''粗略统计二胎年龄差距se 为1 主申请人,多数为爸爸se为2共同申请人,多为妈妈和孩子se为0,others'''#difage = []class family:	def __init__(self):		self.mainpyear= None		self.comPyear=[]		self.diff = []	def diff_age(self):		if len(self.comPyear)>2:			self.comPyear = sorted(self.comPyear, reverse = True)			#print(self.comPyear)			if( self.comPyear[0]-self.comPyear[1]<18):				self.diff.append( self.comPyear[0]-self.comPyear[1])		self.comPyear=[]if __name__ == '__main__':				b= pd.read_csv('a.csv', sep=',', dtype = {'id':str})	b['year']=pd.to_numeric(b['id'].str[6:10])	myf = family()	for key,row in b.iterrows():		if( row['se']==1):			myf.mainpyear = row['year']			myf.diff_age()		elif( row['se']==2):			myf.comPyear.append(row['year'])			#myf.diff_age()		#print(myf.diff)	a = pd.Series(myf.diff)	a.plot.hist(bins =19 )	plt.show()

 

结论:二胎年龄差距,2,3岁的家庭最多。

转载地址:http://tfpg.baihongyu.com/

你可能感兴趣的文章
Mysql学习总结(13)——使用JDBC处理MySQL大数据
查看>>
Mysql学习总结(14)——Mysql主从复制配置
查看>>
Mysql学习总结(15)——Mysql错误码大全
查看>>
Mysql学习总结(17)——MySQL数据库表设计优化
查看>>
Mysql学习总结(18)——Mysql主从架构的复制原理及配置详解
查看>>
Mysql学习总结(19)——Mysql无法创建外键的原因
查看>>
Mysql学习总结(20)——MySQL数据库优化的最佳实践
查看>>
Mysql学习总结(21)——MySQL数据库常见面试题
查看>>
Mysql学习总结(22)——Mysql数据库中制作千万级测试表
查看>>
Mysql学习总结(23)——MySQL统计函数和分组查询
查看>>
Mysql学习总结(24)——MySQL多表查询合并结果和内连接查询
查看>>
Mysql学习总结(25)——MySQL外连接查询
查看>>
Mysql学习总结(26)——MySQL子查询
查看>>
Mysql学习总结(27)——Mysql数据库字符串函数
查看>>
Mysql学习总结(28)——MySQL建表规范与常见问题
查看>>
Mysql学习总结(29)——MySQL中CHAR和VARCHAR
查看>>
Mysql学习总结(2)——Mysql超详细Window安装教程
查看>>
Mysql学习总结(30)——MySQL 索引详解大全
查看>>
Mysql学习总结(31)——MySql使用建议,尽量避免这些问题
查看>>
Mysql学习总结(33)——阿里云centos配置MySQL主从复制
查看>>