博客
关于我
利用pandas做数据分析统计应用---统计二胎年龄差距
阅读量:376 次
发布时间:2019-03-05

本文共 918 字,大约阅读时间需要 3 分钟。

源码和数据文件见上述链接。

本文数据提取自深圳市2019年某次公租房申请公示名单,移除了非身份证的数据。

import pandas as pdimport matplotlib.pyplot as plt '''粗略统计二胎年龄差距se 为1 主申请人,多数为爸爸se为2共同申请人,多为妈妈和孩子se为0,others'''#difage = []class family:	def __init__(self):		self.mainpyear= None		self.comPyear=[]		self.diff = []	def diff_age(self):		if len(self.comPyear)>2:			self.comPyear = sorted(self.comPyear, reverse = True)			#print(self.comPyear)			if( self.comPyear[0]-self.comPyear[1]<18):				self.diff.append( self.comPyear[0]-self.comPyear[1])		self.comPyear=[]if __name__ == '__main__':				b= pd.read_csv('a.csv', sep=',', dtype = {'id':str})	b['year']=pd.to_numeric(b['id'].str[6:10])	myf = family()	for key,row in b.iterrows():		if( row['se']==1):			myf.mainpyear = row['year']			myf.diff_age()		elif( row['se']==2):			myf.comPyear.append(row['year'])			#myf.diff_age()		#print(myf.diff)	a = pd.Series(myf.diff)	a.plot.hist(bins =19 )	plt.show()

 

结论:二胎年龄差距,2,3岁的家庭最多。

转载地址:http://tfpg.baihongyu.com/

你可能感兴趣的文章
MySQL密码忘记,怎么办?
查看>>
mysql对同一张表进行查询和赋值更新
查看>>
mysql导入数据库出现:Incorrect string value: '\xE7\x82\xB9\xE9\x92\x9F' for column 'chinese' at row 1...
查看>>
mysql导入(ibd文件)
查看>>
Mysql工作笔记006---Mysql服务器磁盘爆满了_java.sql.SQLException: Error writing file ‘tmp/MYfXO41p‘
查看>>
mysql常用命令
查看>>
MySQL常用指令集
查看>>
mysql常用操作
查看>>
MySQL常用日期格式转换函数、字符串函数、聚合函数详
查看>>
MySQL常见错误分析与解决方法总结
查看>>
MySQL底层概述—2.InnoDB磁盘结构
查看>>
MySQL底层概述—3.InnoDB线程模型
查看>>
MySQL底层概述—5.InnoDB参数优化
查看>>
MySQL底层概述—6.索引原理
查看>>
MySQL底层概述—7.优化原则及慢查询
查看>>
MySQL底层概述—8.JOIN排序索引优化
查看>>
MySQL底层概述—9.ACID与事务
查看>>
Mysql建立中英文全文索引(mysql5.7以上)
查看>>
mysql建立索引的几大原则
查看>>
Mysql建表中的 “FEDERATED 引擎连接失败 - Server Name Doesn‘t Exist“ 解决方法
查看>>