博客
关于我
利用pandas做数据分析统计应用---统计二胎年龄差距
阅读量:376 次
发布时间:2019-03-05

本文共 918 字,大约阅读时间需要 3 分钟。

源码和数据文件见上述链接。

本文数据提取自深圳市2019年某次公租房申请公示名单,移除了非身份证的数据。

import pandas as pdimport matplotlib.pyplot as plt '''粗略统计二胎年龄差距se 为1 主申请人,多数为爸爸se为2共同申请人,多为妈妈和孩子se为0,others'''#difage = []class family:	def __init__(self):		self.mainpyear= None		self.comPyear=[]		self.diff = []	def diff_age(self):		if len(self.comPyear)>2:			self.comPyear = sorted(self.comPyear, reverse = True)			#print(self.comPyear)			if( self.comPyear[0]-self.comPyear[1]<18):				self.diff.append( self.comPyear[0]-self.comPyear[1])		self.comPyear=[]if __name__ == '__main__':				b= pd.read_csv('a.csv', sep=',', dtype = {'id':str})	b['year']=pd.to_numeric(b['id'].str[6:10])	myf = family()	for key,row in b.iterrows():		if( row['se']==1):			myf.mainpyear = row['year']			myf.diff_age()		elif( row['se']==2):			myf.comPyear.append(row['year'])			#myf.diff_age()		#print(myf.diff)	a = pd.Series(myf.diff)	a.plot.hist(bins =19 )	plt.show()

 

结论:二胎年龄差距,2,3岁的家庭最多。

转载地址:http://tfpg.baihongyu.com/

你可能感兴趣的文章
MySQL 多表联合查询:UNION 和 JOIN 分析
查看>>
MySQL 大数据量快速插入方法和语句优化
查看>>
mysql 如何给SQL添加索引
查看>>
mysql 字段区分大小写
查看>>
MySQL 存储引擎
查看>>
mysql 更新子表_mysql 在update中实现子查询的方式
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>
mysql 表的操作
查看>>
MySQL 触发器
查看>>
mysql 让所有IP访问数据库
查看>>
MySQL 高可用性之keepalived+mysql双主
查看>>
mysql5.6.21重置数据库的root密码
查看>>
MySQL5.6忘记root密码(win平台)
查看>>
mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
查看>>
mysql5.7性能调优my.ini
查看>>
mysql5.7的安装和Navicat的安装
查看>>
MySQL8.0.29启动报错Different lower_case_table_names settings for server (‘0‘) and data dictionary (‘1‘)
查看>>
MySQL8修改密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy requirements
查看>>
mysqlbinlog报错unknown variable ‘default-character-set=utf8mb4‘
查看>>